
Reinforcement Learning Integrated with
Vision-Based Control Robotic Arm

Pick-and-Place System
Shruti Pasumarti, Anusha Manohar, Spencer Karofsky, Hemanth Sai Madadapu

Northeastern University

Abstract—We present a robotic arm system capable of performing
pick-and-place tasks by combining reinforcement learning with
computer vision techniques. The system utilizes YOLOv5 for
real-time object detection and a custom convolutional neural
network for scene interpretation. A 7-degree-of-freedom robotic
arm with a two-finger gripper is controlled through a hybrid
approach that integrates learned policies with manual guidance.
Our implementation achieves a 100% grasp success rate and
demonstrates an 85× improvement in processing speed—from 1
FPS to 85 FPS—allowing the system to train 50,000 episodes in
just 10 minutes.

GitHub Repository: Github Repository

I. INTRODUCTION

Robotic manipulation—particularly grasping and relocat-
ing objects in dynamic environments—is a fundamental yet
complex challenge in robotics. This project addresses that
challenge by developing a vision-integrated reinforcement
learning (RL) system for a simulated robotic arm, capable of
performing precise and reliable pick-and-place operations.

Our approach combines deep reinforcement learning with
real-time computer vision to enable autonomous object detec-
tion, localization, and manipulation. The system uses YOLOv5
for accurate object detection and a custom CNN to process
visual inputs, which are combined with MLP-processed state
data to form a observation space for the learning algorithm.
A 7-degree-of-freedom robotic arm with a two-finger gripper
is trained using the Soft Actor-Critic (SAC) algorithm im-
plemented through Stable-Baselines3 in a PyBullet simulation
environment.

To handle the challenges of sparse rewards and fine-grained
control, we introduce a hybrid control architecture. The RL
policy guides high-level motion planning such as approaching
and aligning with the object, while manual logic executes
the critical grasp and lift phases. This hybrid approach sig-
nificantly improves reliability and ensures consistent task
completion.

Our final system demonstrates robust performance, achiev-
ing a 100% success rate in grasp tasks after training on 50,000
episodes. Performance was further boosted by optimizing in-
ference speed, image resolution, and staged reward functions.
Through this project, we show that combining perception-
driven learning with structured control logic results in a fast,
stable, and scalable solution to robotic object manipulation.

II. SYSTEM ARCHITECTURE AND IMPLEMENTATION

A. Overall Architecture

Our system integrates computer vision with reinforcement
learning to create an intelligent robotic manipulation frame-
work. The architecture consists of two primary modules
working in concert. The Computer Vision Module employs
YOLOv5 for object detection and classification, processes
64×64×3 RGB images, and utilizes depth information to calcu-
late 3D positions with an error margin of approximately 0.88
cm. The Reinforcement Learning Environment operates on
the PyBullet physics engine, simulating a 7-DOF robotic arm
equipped with a two-finger gripper. The system implements a
staged reward mechanism to guide the robot through distinct
phases: approach, descent, grasp, and lift. State representation
combines visual data with proprioceptive information in a
26-dimensional vector, while the action space encompasses
7 continuous dimensions controlling joint positions and the
gripper.

Fig. 1. System architecture of the RL-based robotic arm for pick-and-place
operations, showing the computer vision module, state representation, policy
network, action selection, stage determination, hybrid control, execution, and
reward system components.

Fig. 1 illustrates our complete system architecture. The Com-
puter Vision Module processes image input through YOLOv5

https://github.com/anushamanohar/CS5100/tree/main


object detection, color classification, and 3D position estima-
tion. This information feeds into the State Representation,
which combines RGB images (64×64×3) with joint states
and object position data. The SAC Policy Network with our
CustomCombinedExtractor processes this state representation
and outputs actions through the Action Selection module,
which operates in a 7D continuous action space controlling
joint positions and the gripper. The Stage Determination com-
ponent tracks the current operation phase (approach, descent,
grasp/lift/success), which informs the Hybrid Control system
where RL handles stages 0-1 and manual control manages
stages 2-4. The Execution module implements commands in
the physics simulation, providing feedback to the Reward Sys-
tem that assigns stage-based rewards (e.g., +500 for success,
+100 for grasp).

B. Policy Network and Action Selection

We designed a custom policy network based on the Soft
Actor-Critic (SAC) algorithm to enable continuous control
in a high-dimensional action space. The policy architecture
features a dual-branch feature extractor: a convolutional neu-
ral network (CNN) processes 64×64 RGB images from the
robot’s simulated camera to extract spatial features, while
a multi-layer perceptron (MLP) processes a 26-dimensional
state vector consisting of joint angles, joint velocities, and
3D positional information. The outputs from both the CNN
and MLP branches are concatenated to form a unified feature
representation, which is then passed to the actor and critic
networks of SAC. This architecture allows the agent to make
control decisions based on both visual perception and precise
state feedback, improving policy robustness and task perfor-
mance.

III. MULTI-OBJECT MANIPULATION AND 3D
TRIANGULATION

A. Multi-Object Manipulation Process

The robot picks and places objects through a sequential pro-
cess. First, in the positioning phase, the arm moves above the
object. This movement follows a carefully planned trajectory
that optimizes for both speed and precision, often utilizing
inverse kinematics calculations to determine the exact joint
angles needed. Vision systems employing RGB-D cameras or
stereo vision may provide real-time feedback to adjust the
arm’s position relative to the target object.

Next, during grasping, the gripper closes to hold the object.
then the arm moves the object to the target area. Finally, in
the release and reset phase, the object is dropped into a tray
and the robot resets for the next task as shown in Fig. 3.

The entire process operates within a closed-loop control
system that continuously monitors positional accuracy, gripper
status, and environmental conditions.

Fig. 2. Multi-object sequence showing the robot’s sequential handling process.
The robot picks up objects from the source tray (Steps 1 and 4) and places
them in the destination tray (Steps 2, 3, and 5).

Fig. 3. Multi-object sequence in PyBullet simulation showing the robot
picking objects from the source tray and placing them in the destination tray
with collision detection enabled.

B. Computer Vision and 3D Triangulation

The robot uses 3D triangulation to convert 2D image points
into 3D world coordinates. This process is achieved through
projective geometry, which models how 3D scenes are pro-
jected onto 2D image planes. Using OpenCV’s triangulation
functions along with calibrated intrinsic and extrinsic camera
parameters, the robot accurately reconstructs the 3D positions
of detected objects.

• Single-Object Image Point Detection: The image point
centers are calculated using the segmentation mask out-
putted by PyBullet. We then use image thresholding to
isolate pixels corresponding to the box and take the mean
of the x- and y-components to get the center image point,
which is then triangulated into a 3D world coordinate
using the computed intrinsic and extrinsic calibration
matrices.

• Multi-Object Image Point Detection: The image point
centers are calculated using the output of the YOLOv5
model, which outputs the bounding box coordinates,
which like for single-object detection, we take the mean
to get the center for each point. However, a problem
that arises is matching the boxes from the primary and
secondary camera views. While we didn’t have time to



address this problem, for future work, we would use the
DBSCAN clustering algorithm to group detections so that
the points are matched. Then, using the same method
as for single-object detection, we triangulate the image
coordinates into 3D world coordinates.

IV. REINFORCEMENT LEARNING APPROACH AND
TESTING

Fig. 4. Evolution of our RL approach showing the progression from basic
RL (1) through extended training (2) and staged rewards (3) to the hybrid
RL/manual approach (4) that achieved high success rates. The diagram also
shows the 5-stage progression process and key optimizations implemented.

Fig. 4 illustrates the evolution of our reinforcement learning
approach. We began with basic RL (stage 1), which achieved
100% success but relied on reward hacking, only completing
the initial approach stage. Extended training (stage 2) and
staged rewards (stage 3) both resulted in 0% success despite
completing stage 1 (descent). Our final hybrid RL/manual
approach (stage 4) achieved high success rates by combining
the strengths of both methods. The diagram also shows our
5-stage progression (approach, descent, grasp, lift) and key
optimizations including reduced simulation steps, selective
YOLO inference, and optimized image resolution.

A. Initial Challenges and Approaches

Initial training phases using basic reinforcement learning re-
vealed significant issues with unintended behaviors. Although
the agent technically achieved a 100% success rate (based on
a threshold of object height change > 5cm), this was not
through grasping. Instead, the agent discovered a loophole
in the reward function — a phenomenon known as reward

hacking. The agent developed a push-to-edge strategy, where
it would nudge the object such that it slid or fell off the tray.
This action increased the vertical displacement of the object,
thereby satisfying the success condition without performing an
actual grasp. Despite a 0% grasp attempt rate, it consistently
achieved lift heights above 12cm, exposing the weakness of
using single-objective metrics (e.g., height change) for com-
plex manipulation tasks. This emphasized the need for a more
robust, multi-objective reward structure. An effective design
should penalize non-grasp interactions like pushing, encourage
finger contact and proper gripper closure, and require the
object to remain in contact with the gripper throughout the
lift phase. Such conditions would more accurately reflect true
task success and align the learned policy with the intended
behavior.

Fig. 5. Basic RL policy showing 100% success rate through reward hacking.
The agent completes the task using unintended strategies like pushing instead
of grasping.

B. Hybrid RL/Manual Approach

Fig. 6. Overview of grasp execution with RL/manual hybrid strategy.

To address the limitations observed in pure RL train-
ing—particularly the inability to transition from positioning
to grasping—we implemented a hybrid control strategy that
leverages both learned and deterministic behavior. In this



system, the trained RL policy handles the early stages of the
task (Stages 0–1), guiding the robotic arm through visual-
based positioning and approach. Once the end-effector suc-
cessfully hovers above the target object, control is transferred
to a manually scripted module responsible for executing the
grasp and lift (Stages 2–3). This includes a controlled descent,
gripper closure, and a vertical lift to complete the task. A
custom wrapper class, HybridRLEnv, monitors the agent’s
progress and triggers the handoff when Stage 1 conditions are
satisfied. This modular control design enables robust execu-
tion: the RL agent manages variability and noise in perception,
while the manual logic ensures reliability for precision-based
actions such as grasping. Experimental results showed that
this approach achieved a 100% success rate across all test
episodes. The object was consistently lifted, grasp attempts
were successfully initiated, and motion remained smooth and
repeatable. All task stages were reached reliably, confirming
the effectiveness of this hybrid architecture. This solution high-
lights a critical lesson in reinforcement learning for robotic
manipulation: while RL excels at flexible, perception-driven
control, certain fine-grained or low-probability actions—such
as grasping—may require deterministic logic. Hybridization
offers a practical balance that maximizes RL adaptability while
ensuring task-level consistency and reliability. Below logs
show the robot executing a successful grasp. It first moves
above the object, then descends to the grasp position. After
detecting contact with the object, it closes the gripper and lifts
the object by 9.6 cm. The lift meets the success threshold,
confirming a stable and complete grasp.

Fig. 7. Step 2: Moving above the object.

Fig. 7 This terminal output showcases the robot’s first two
steps in a pick-and-place operation. In Step 1, the gripper
opens to prepare for object interaction. Step 2 shows the
robot precisely positioning itself above the target cube with
coordinates [0.83, 0.21, 0.49]. The system logs each movement
of the end-effector, displaying both 3D position coordinates
and the calculated distance to target. With each iteration, the
arm moves incrementally closer (from 1.1485m to 0.0351m),
demonstrating the precision control algorithm at work. When
the arm achieves sufficient proximity to the target position, the
system confirms completion with ”Close enough to target!” -
indicating it’s ready to proceed to the grasping phase of the
operation.

Fig. 8. Step 3–4: Descent and gripper contact detected.

Fig. 9. Step 5–7: Lift execution and final success confirmation.

V. DATA FLOW AND PROCESS INTEGRATION

The system operates through a cyclical information flow.
Visual data is captured and processed by the Computer Vision
Module, which feeds into the State Representation component.
The SAC Policy Network analyzes this representation to
determine optimal actions within the continuous action space.
Stage Determination evaluates the current progress, trigger-
ing appropriate control modes through the Hybrid Control
system. Actions are executed in the simulation environment,
generating feedback that updates the state and informs the
reward calculations. This reinforcement signal then guides
policy optimization in subsequent iterations.

The environment feedback loop provides critical informa-
tion for stage transitions and reward assignment. As the robot
successfully progresses through stages—from approach to de-
scent, grasp, lift, and ultimately task completion—the reward
system provides increasingly substantial reinforcement signals,
shaping the policy toward optimal behavior patterns. This
integrated architecture demonstrates how computer vision and
reinforcement learning can be effectively combined to create
adaptive robotic manipulation systems capable of performing
complex pick-and-place operations with high reliability.



VI. PERFORMANCE IMPROVEMENTS AND MODEL
ACHIEVEMENTS

To significantly enhance system efficiency and learning
speed, we applied a series of optimizations across the training
pipeline. First, we reduced the number of simulation steps
in PyBullet, which preserved task fidelity while improving
computational efficiency. Additionally, YOLOv5 was executed
only every three steps using CUDA, substantially reducing the
overhead of object detection.

The input image resolution was lowered from 128×128 to
64×64 pixels, and the convolutional neural network (CNN)
was redesigned to maintain accuracy while operating at
this reduced scale. We further tuned critical hyperparame-
ters—including batch size and training frequency—to maxi-
mize learning throughput. These adjustments increased train-
ing speed from 1 frame per second (FPS) to 85 FPS. As a
result, the system completed 50,000 training steps in just 10
minutes.

Fig. 10. Performance metrics of our hybrid RL/manual approach showing
(a) consistent high rewards across episodes, (b) 100% success rate, (c)
all episodes reaching the final success stage, (d) lift height measurements,
(e) consistent time to success, (f) smooth motion characteristics, and (g)
distribution of maximum stages reached, demonstrating the system’s reliability
and effectiveness.

As shown in Fig. 10, our hybrid approach achieved con-
sistent performance across all metrics. The system main-
tained high rewards (approximately 275 per episode), reached
100% success rate, and completed all stages of the pick-
and-place operation in every trial. While the maximum lift
height remained below the success threshold of 5cm due to
our controlled approach prioritizing stability over maximum
height, the system consistently completed all operations in
approximately 6 steps The final trained model demonstrated
strong performance in real-world simulation, by consistently
executing grasp-and-lift sequences with precision and stability,
validating the robustness of the hybrid framework under var-
ied test conditions. By integrating vision-based control with

hybrid decision-making, the model overcame prior learning
bottlenecks.

VII. CHALLENGES

Despite its success, the development process presented
several challenges:

• Inverse Kinematics Instability: Minor inaccuracies in
inverse kinematics occasionally led to unstable or jittery
joint movements during fine positioning, especially near
the grasp point. This reduced the precision required for
reliable object manipulation.

• Sparse Reward Challenges: Sparse reward signals made
early grasp learning difficult, requiring hybrid strategies.

• High Sample Requirements: The agent needed ex-
tensive interaction—over 150,000 simulation steps—to
begin reliably learning the task due to sparse reward
signals and physical complexity.

• Inconsistent Grasping: The RL policy alone failed to
achieve consistent grasp execution, making manual inter-
vention necessary to ensure robustness.

• Force Calibration Issues: Early attempts suffered from
insufficient gripping force, necessitating adjustments ex-
ceeding 40,000 units to maintain object stability during
lifts.

VIII. FUTURE DIRECTIONS

Building on the current system’s capabilities, several path-
ways can be explored:

• Pure RL Learning: Eliminate reliance on hybrid control
by enhancing reward structures that enable the agent to
learn complete behaviors autonomously

• Demonstration Learning: Incorporate learning from
demonstration to bootstrap complex tasks and reduce the
training time required for grasping behavior.

• Warehouse Simulation: Expand the simulation envi-
ronment to model real-world warehouse scenarios with
diverse object types, occlusions, and spatial constraints.

IX. CONCLUSION

This project shows a clear step forward in using computer
vision and reinforcement learning for robotic tasks. By com-
bining RL with manual strategies, we achieved fast and reliable
object handling. Our work proves that with the right mix of
technology, robotic systems can learn complex tasks quickly
and efficiently.

CONTRIBUTION

Shruti led the reinforcement learning module, designing
the SAC policy network with hybrid RL/manual approach
that achieved 100% success rate. Anusha implemented the
YOLOv5 object detection pipeline with optimized image pro-
cessing. Spencer created the URDF generation software and
integrated the 3D reconstruction pipeline. Hemanth focused on
training and evaluation. All team members collaborated closely
throughout the project and played active roles in preparing the
final report and presentation.



REFERENCES

[1] Ghatge, D., Patil, P., Algude, A., Chikane, S., & Dhotre, A. (2024).
*Interactive Robotic Arm Simulation*. International Research Journal
on Advanced Engineering Hub, 2(6), 1665–1668. Link: https://doi.org/
10.47392/IRJAEH.2024.0229

[2] Lobbezoo, A., Qian, Y., & Kwon, H.-J. (2021). *Reinforcement Learning
for Pick and Place Operations in Robotics: A Survey*. Robotics, 10(3),
105. Link: https://doi.org/10.3390/robotics10030105

[3] Martins, F. N., Gomes, N. M., Lima, J., & Wörtche, H. (2023).
*Deep Reinforcement Learning Applied to a Robotic Pick-and-Place
Application*. In Communications in Computer and Information Science,
pp. 251–265. Link: https://doi.org/10.1007/978-3-030-91885-9 18

[4] Laskowski, T., & Milecki, A. (2022). *Reinforcement Learning-
Based Algorithm to Avoid Obstacles by the Anthropomorphic Robotic
Arm*. Applied Sciences, 12(13), 6629. Link: https://doi.org/10.3390/
app12136629

https://doi.org/10.47392/IRJAEH.2024.0229
https://doi.org/10.47392/IRJAEH.2024.0229
https://doi.org/10.3390/robotics10030105
https://doi.org/10.1007/978-3-030-91885-9_18
https://doi.org/10.3390/app12136629
https://doi.org/10.3390/app12136629

	Introduction
	System Architecture and Implementation
	Overall Architecture
	Policy Network and Action Selection

	Multi-Object Manipulation and 3D Triangulation
	Multi-Object Manipulation Process
	Computer Vision and 3D Triangulation

	Reinforcement Learning Approach and Testing
	Initial Challenges and Approaches
	Hybrid RL/Manual Approach

	Data Flow and Process Integration
	Performance Improvements and Model Achievements
	Challenges
	Future Directions
	Conclusion
	References

